Math@Funny@Honey@Money

أسرة الموقع ترحب بك و نتمنى أن تكون بتمام الصحة و العافيه
Math@Funny@Honey@Money



    Viscous vs inviscid flow

    شاطر
    avatar
    teacher
    ناظر
    ناظر

    ذكر
    عدد الرسائل : 439
    العمر : 30
    Location : Egypt
    Job/hobbies : learner
    Skills/Courses : egypt
    Mood :
    الأوسمة :
    تاريخ التسجيل : 05/04/2008

    m9 Viscous vs inviscid flow

    مُساهمة من طرف teacher في الخميس 08 مايو 2008, 4:59 pm


    Viscous vs inviscid flow




    Viscous problems are those in which fluid friction has significant effects on the fluid motion.
    The Reynolds number can be used to evaluate whether viscous or inviscid equations are appropriate to the problem.
    Stokes flow is flow at very low Reynolds numbers, such that inertial forces can be neglected compared to viscous forces.
    On the contrary, high Reynolds numbers indicate that the inertial forces are more significant than the viscous (friction) forces. Therefore, we may assume the flow to be an inviscid flow, an approximation in which we neglect viscosity at all, compared to inertial terms.
    This idea can work fairly well when the Reynolds number is high. However, certain problems such as those involving solid boundaries, may require that the viscosity be included. Viscosity often cannot be neglected near solid boundaries because the no-slip condition can generate a thin region of large strain rate (known as Boundary layer) which enhances the effect of even a small amount of viscosity, and thus generating vorticity. Therefore, to calculate net forces on bodies (such as wings) we should use viscous flow equations. As illustrated by d'Alembert's paradox, a body in an inviscid fluid will experience no drag force. The standard equations of inviscid flow are the Euler equations. Another often used model, especially in computational fluid dynamics, is to use the Euler equations away from the body and the boundary layer equations, which incorporates viscosity, in a region close to the body.
    The Euler equations can be integrated along a streamline to get Bernoulli's equation. When the flow is everywhere irrotational and inviscid, Bernoulli's equation can be used throughout the flow field. Such flows are called potential flows.




    afro


    _________________
    واخر دعوانا ان الحمد لله رب العالمين
    avatar
    mezooo125
    Site Administrator
    Site Administrator

    ذكر
    عدد الرسائل : 623
    العمر : 30
    Location : Egypt
    Job/hobbies : Math Teacher
    Skills/Courses : ICDL/ENGLISH/COMPUTER SKILLS
    Mood :
    تاريخ التسجيل : 25/03/2008

    m9 رد: Viscous vs inviscid flow

    مُساهمة من طرف mezooo125 في الجمعة 09 مايو 2008, 1:20 am

    thanksssssssssss cheers


    _________________
    وما يلفظ من قول إلا لديه رقيب عتيد






    avatar
    Asmaa Mahmoud
    Site Administrator
    Site Administrator

    انثى
    عدد الرسائل : 982
    العمر : 30
    Location : egypt / Giza
    Job/hobbies : math teacher
    Skills/Courses : thinking
    Mood :
    الأوسمة :
    تاريخ التسجيل : 27/03/2008

    m9 رد: Viscous vs inviscid flow

    مُساهمة من طرف Asmaa Mahmoud في الجمعة 09 مايو 2008, 11:35 pm



    _________________
    ][/url]




      الوقت/التاريخ الآن هو السبت 18 نوفمبر 2017, 11:09 pm