Math@Funny@Honey@Money

أسرة الموقع ترحب بك و نتمنى أن تكون بتمام الصحة و العافيه
Math@Funny@Honey@Money



    physical pendulum and direct measurement

    شاطر
    avatar
    teacher
    ناظر
    ناظر

    ذكر
    عدد الرسائل : 439
    العمر : 31
    Location : Egypt
    Job/hobbies : learner
    Skills/Courses : egypt
    Mood :
    الأوسمة :
    تاريخ التسجيل : 05/04/2008

    m11 physical pendulum and direct measurement

    مُساهمة من طرف teacher في الثلاثاء 15 يوليو 2008, 1:01 am

    Physical Pendulum & Direct Measurement

    Unfortunately, the integration approach is possible only when the body has a known geometric shape. In the mathematical human body models such as Hanavan (1964) and Yeadon (1990), it is assumed that the body segments show a group of geometric shapes such as ellipsoid of revolution, elliptical solids, and stadium solids. See BSP Equations for the details.
    If the body has a irregular shape, the integration approach has not much use and a direct measurement must be attempted. Figure 6 shows a body with irregular shape which is rotating freely about an axis passing through its one end. The X axis is the axis of rotation, thus, the center of mass (CM) of the body moves within the YZ plane.
    Figure 6
    The torque produced by the weight of the body about the X axis is then
    [19]
    where Tx = the torque about the X axis, Ixx = MOI of the body about the X axis, a = angular acceleration, m = the mass of the body, g = the gravitational acceleration (9.81 m/s2), and L = the distance between the axis of rotation to the body's CM. For a small q,
    [20]
    and, from [19],
    [21]
    Solving [21] for q, one obtains
    [22]
    where qo = the amplitude, f = the frequency of the pendulum, e = the phase angle, T = the period of the pendulum. As shown in [22], the MOI of the body about the X axis, after all, can be computed from the period of a small pendulum motion of the body. The MOI about the parallel axis, which passes through the CM of the body, can be also computed based on the parallel-axis theorem:
    [23]
    See Chandler et al. (1975) for an example of this approach

    jocolor


    _________________
    واخر دعوانا ان الحمد لله رب العالمين
    avatar
    teacher
    ناظر
    ناظر

    ذكر
    عدد الرسائل : 439
    العمر : 31
    Location : Egypt
    Job/hobbies : learner
    Skills/Courses : egypt
    Mood :
    الأوسمة :
    تاريخ التسجيل : 05/04/2008

    m11 some references

    مُساهمة من طرف teacher في الثلاثاء 15 يوليو 2008, 1:07 am

    References and Related Literature


    Chandler, R. F., Clauser, C. E., McConville, J. T., Reynolds, H. M. and Young, J. W. (1975). Investigation of inertial properties of the human body. AMRL-TR-74-137, AD-A016-485. DOT-HS-801-430. Aerospace Medical Research Laboratories, Wright-Patterson Air Force Base, Ohio.

    Hanavan, E. P. (1964). A mathematical model of the human body. AMRL-TR-64-102, AD-608-463. Aerospace Medical Research Laboratories, Wright-Patterson Air Force Base, Ohio.

    Yeadon, M. R. (1990). The simulation of aerial movement-II. A mathematical inertia model of the human body. J. Biomechanics 23, 67-74.

    study


    _________________
    واخر دعوانا ان الحمد لله رب العالمين

      الوقت/التاريخ الآن هو السبت 19 يناير 2019, 12:09 pm